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SECTION 1

INTRODUCTION

In time distributed multiple access (TDMA) communication networks
it is often desirable to reach a large community of users through the
hroadcast transmission of information. Due to the TDMA architecture,
those units participating in the transmission or reception of
information packets are restricted from participating in other
communication activities (on other channels) during that period. As a
result of this the utilization of many relay units in a broadcast tree
wastes a considerable quantity of system capacity. It would therefore
be desirable to reduce, or minimize, the number of relay units used in
a broadcast network. From this we can define the following problem to

be counsidered:

Problem: Minimize the number of broadcast transmissions required
to disseminate a packet of information to a community of users on a

multi-relay TDMA network so that the relay delay to reach any user in

the community is minimal.




i a0

The algorithm schema presented in this paper will solve this

problem,

In addition to minimizing the total number of relay transmissions
required to reach some community of users, it is also important that
the information be disseminated in a timely manner, Thus it is
desirable to minimize the delay, therefore to minimize the number of
relay transmissions required to reach any member in the community. It
is this objective that stipulates that the shortest path (with respect
to relay '"hops") from the originator to every member of the user
community be known in advance. The algorithms presented are intended
to be processed by a network control facility which has full knowledge

of system connectivity.

Two algorithms are utilized in the schema where algorithm B is

embedded in algorithm o,

The definitions needed to support a more formal representation of
the problem will be given in the next section., The remainder of this
paper will consider the problem and solution techniques in graph (set)

theoretic terms with analogies to the communication problem previously

defined.
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SECTION 2

PROBLEM DEFINITION

In this section we will present a formal (mathematical) definition

of the communication problem given in the introduction to this paper.

A number of other definitions will be required for the statement

of the formal problem.

Definition 1: A graph G (V, E) is an ordered pair of disjuint
sets V, E such that EC V2 and V # #, where V is a set of vertices

and E a set of edges.1 [Bollobas, Pg xiii]

An edge, which is an element of set E, is denoted by its
endpoints; thus if an edge connects vertices x and y it would be

denoted as edge xy. We can also state then that edge xy is adjacent




to vertex x and to vertex y and if Xy € E we can then state that x
and y are adjacent vertices. Additionally we may stipulate the: an
edge be directed, hence giving an orientation to the vertices that
constitute its endpoints. A directed edge, ;_y’, would have a source x
and a terminus y. This implies that if G (V,E) represents a network,
then Xy is a branch in the network along which a flow may pass from x
to y but not from y to x. A directed edge ?:'y’ in a graphical
representation of a communication network would imply that y could

hear x's transmissions but x could not receive messages transmitted by

y.

Definition 2: A subgraph G' (V', E') of some graph G (V, E) is a

graph in which V' C V and E'CE.

From this definition it is clear that every graph G (V, E) has at

least one subgraph.

Definition 3: A graph G(V,E) is said to be connected if for every

"i,Vj € V (i¥j) there exists at least one path(set of adjacent

vertices) from v; to v




Definition 4: A spanning subgraph E(V, E), on a vertex set VCV ’
of G (V, E) is a graph such that vV EV and EQE, where G (‘\7, E) is

connec ted.

Recall that the cardinality of a finite set of distinct elements S
is the measure of the discrete elements in the set. Thus if some set S

contained n discrets elements then cardinality S| =n .

~ ~ A

Definition 5: A minimal spanning subgraph G (V,E) on a vertex set
VEV is a subgraph of G (V, E) where V°CV and E CE such that G(V,E)
. AN AN AN
is connected and that there exists no G(V,E) where

A ~
cardinality [E] < cardinality [E]

ACATEAY . . P °
and where G(V,E) satisfies the same conditions on V.

Definition 6: Given a vertex v.EV of a graph G(V,E) the
outdegree ,d+(vi) is a measure of the number of directed

edges V_i;j (j # 1) in the set of edges E.




Definition 7: Given a vertex V;EV of a graph G(V,E), the
indegree , d_(vi) y 18 a measure of the number of directed edges

‘;]T:i (i#j) in the edge set E.

We will now define another operator of measure on the sets V,E

defining a graph G(V,E).

Definition 8: Let Q[G(V,E)] represent the number of vertices
V.EV where d_(vi)>0 and d+(vi) >0. More formally:
.Q[G(V,E)] = card

+ -
VEV]d(v),d (v > 0

The shortest path from any v; € V to any vje v (vi ¥ vj)

j° Pij shall then be an ordered set of

vertices VireseVis VyeeoeeVy vhere the existence of any

shall he denoted as Pi

two consecutive vertices V1 in Pij implies that a directed
edge i is contained in the shortest path Pij‘
Let G(V,E) represent a communications network where V is the set

of terminals in the network, then any edge v—i\75 € E implies that

v . fole
J can receive transmissions from vj

10
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Let S denote the source (originator) in a given broadcast network
and define a subgraph E(G,E) as the subgraph showing the union of the
shortest naths (defined by vertices) from S to all users in a

community of interest, v® and all adjacent edges to V : E.

el oy [} —
G(V’E)-G(Iviepaj ijev |,| Vkvle st VVje V1)

We can state the communication problem presented in the previous

section as:

Problem ¢1 Find the minimal spanning subgraph E(V,E) of the
subgraph G(V,E) on the vertex set I vus ‘.

We now add the constraint that in G(V,E) the path st from s to
any vj € v° must be such that

cardmahty[ st] = cardinality [st ]

thus retaining the minimal distance from any v, € v° to the source
defined by the set of shortest paths 'st ij €V, l given on
¢ (V,E).

Finally we state the condition of optimality: G(V,E) is such

AN
that minimal spanning graph G(V,a which satisfies the same

Q [E:‘(”, ")] >Q fc(’v‘,’a‘)]

conditions and where:

11




l.
2.

3.

"n

The full problem is given below.

Problem ¢2: Find E(V,E') such that:

v
. . 5 . . . o
cardinality st cardinality st] V v; €V

where st is the shortest path from S to v; defined on E(V,‘F:)

G(V,E) is a minimal spanning subgraph of G(V,E) on the vertex
se:lv°us|

AN A . . g1 . .
%V,E) which satisfies the constraints 1,2,3 and is such that

Q[&‘(’G,Q)] < Q[E(V,E)]

Note that if any v. is deleted from some set V then all edges

Vi (vk /vj) are no longer contained in the set E. Thus if
L
V'V-vjthenE =E-vjvk ij#vk .

Having defined the problem we can preseat the algorithm schema to

solve it in the following sections.

12




SECTION 3

ALGORITHM O

This algorithm is designed to solve the problem ¢, stated in the

previous section. If not for the constraint:

~ o
card [st] = card [st] levjEV

an existing class of algorithms could be applied on G E) to
obtain a minimal spanning tree. Algorithm O preserves the shortest path
characteristics on G (V ,ﬁ ) hence is not contained in the general

class of minimal spanning tree algorithms.

This algorithm (algorithma) utilizes another algorithm within its

structure, which will be defined in the next section of this paper.

What algorithm Bdoes is to find the minimal vertex cover on a
bipartite graph, For the present we will only present one definition to

explain the result of algorithm £ when applied to some graph.

Definition A bipartite graph G (Y, X) is a graph where any

viv; € E is such that v; € X and v{€ Y and XNY=¢ , X U Y=V

Algorithm S when applied to a bipartite vertex set (Y,X) finds
x® € X where x® is such that there is at least one vertex in x®

ad jacent to any vertex in Y. Thus if X® is such that X X" where
card [x"] < card fx"]

vhere X" satisfies the same conditionms, x® is called

minimal cover of Y.

13
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We say algorithm S finds a reduced cover X* because in its present
form there exists a small class of examples where X*is not a minimal

cover. Algorithm B is therefore not optimal by definition.

In the formulation of algorithm & that will be presented, algorithm B

will be utilized in the form of an operator. The step

X;_, = algo B {Y, X, ]

indicates then that xi-l is the reduced cover of the bipartite graph

G(Y, X;) generated by algorithm B.
We need the following definition.

Definition: [ (v,) is the set of vertices ad jacent to some
vertex v,. r(vi, X) is the set of vertices in X adjacent to v,.

I'(Y,X) is the set of vertices in set X adjacent to the vertices in set Y.

The following information must be known prior to executing

algorithm «.
1. Adjacency Matrix of the graph G (V, E)

2. The source S, the set v°

i

3. The set of shortest paths P= ' st ij

o
L€V
e vl

14
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We must define two set operators,one of which will be utilized within

the structure of algorithm o .

Operator Y : 1f Pij is an ordered set of vertices then

l/’(Pij, vk) is the position of Vi in the ordered set Pij' Thus in
the ordered set Py = (v;y A, By C, vj), l[l(Pij, A) =2

Operator T : 1If st is the set of vertices defining a shortest
path from s to vj on some graph G, and P is the set of sets :
| ol
. . € t
‘PSJ, \4 VJ v ‘ hen

T(P,n) = {Viepsj l/,(st, Vi) =n VPB-EP

3

The variables utilized in the structure of algorithm @ are given

below.

F 6 : The length of the longest path in P.
B, 4 This constitutes the set of vertices that are elements of

v° which have a shortest path from the source of length i-l.

A: This is th set of vertices at iteration (relay level) i which

must be covered by the set T (P, i-1) UB, .

2;j-1 This is the set of vertices not in the set B, , that will

partially constitute the minimal cover of A..

15




Ti: The set of terminals who are to relay a message at level i

(definition applies to communication example only).

Ri—l’ The set of terminals who are to receive a message
transmitted from the terminals in the set Ti-l (definition applies to

communication example only).

Two formulations of algorithm & will be presented. The first
algorithm a ; will solve the communications problem stated in the
introduction by specifying (using T, Ri-i) the terminals who are to

receive and transmit at every relay level,

Algorithm O, is less complex in its structure and solves the

problem ¢ o given in the previous section.

Prior to the formal presentation of the two algorithms, a less exact

formulation of algorithm o, will be given,

16




Algorithm o 1

We wish to solve the communication problem stated in the first
section. Our obective is to minimize the number of terminals that must
transmit and receive at any relay level such that a packet of information
transmitted from the source will reach a prespecified community of

interest, V°, with minimal delav.

0. Based upon knowledge of P, the set of shortest paths on the
network, find the length of the longest of the shortest paths

from the source to a terminal in the set V°. Let 6 equal this

distance.
1. Set the iteration counter i to 6 .
2. Compute the set Ao as the set of terminals in V° that have

shortest paths to the source of length g .

3. Determine the set Bi.-l y the set of terminals in v® whose

shortest paths to the source are of length i-1.

4, Apply algorithm B  to find the minimal cover of the set of
terminals in Ai that are not covered by the set of terminals
in B, .

17
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T

Find the minimal cover of the terminals in [‘(Bi_l, Ai) ,

the set of terminals in A; that are covered by the set B, ,
(but not necessarily minimally covered). The minimal cover will
be a subset of the set B, ,. It is important to note that
although every terminal in B,_, must receive an information
packet we wish to minimize the number of terminals that must

retransmit it . This is why we apply algorithm # in this step.

Determine the union of the set of terminals that must transmit
a2z relay level i which are in V% and those that must transmit
at this level and are not (these are the set that must complete
the minimal cover of Ai)' Call the set comprising this uniom
Ti'

Determine the union of B, , and those terminals not in B, ,
that complete the minimal cover of A;. This is the set of
terminals that must receive a packet of information at relay

level i-l. Call this set R, ;.
Let the set A _, be defined as the set R. , and let this
constitute the set of terminals that must be covered in the next

iteration of the algorithm.

Decrement the counter (set i=i-1) and if i=2 after being

decremented then STOP . Otherwise go to step 3 and continue.

18
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Algorithm O

1
0. @=Max | card [P .| , V. v, € V°
8) ) ]
1. i=6
{ 2. Ag '{ vs v, € v°, card [st] =§
o x J-
3. Bi-1= { Vj vj € V, card [st] i-1 ;
r
4, Algorithm B (Ai-r(Bi_l,Ai)),( T(r,i-1) - B, )] =Z51
) [
1 5. Algorithm B _F(Bi-l, A;), Bi-l] =Y, 4
6. T.=Z; 4 V) Y. 4
7 Ri-1 =2 VU By,
8. Ai"l = Zi_l U Bi-l
9, i=i-1, if i>2 go to 3

e

19
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1.

2.

B e

Algorithm o 2

= v e o
6 = Max| card [st} , Vs v

i=0

t : 0
Ag= lvj vy € V, card [st] =
Bi_1 -{ vJ. vj € VC, card [st]- i-1 }

Algorithmﬂ Ai_ r (Bi-l’ Ai)),(T(P, i"l) -Bi"l)]- Zi‘l
Ay =B, Uz,

i-1 i

i=i-1, if i> 2go to 3

20




The computational complexity of algorithms a,, a, is of
order (VA) based on the argument that algorithm S has complexity

0(V3). More exactly the complexity of algorithms o, and a, is

0 [Ordet(algorithm B )]

where O is the length of the longest shortest path in the network. In
reality @ << V, thus we can realistically say @ is relatively
constant with respect to V, therefore for practical purposes we can say
the complexity of algoritims o y and  a, is of order(v3).

Algorithm B is polynomially bounded thus showing an improvement over the

exponentially bounded algorithms previously developed for solving minimal

cover problems.

21




SECTION 4

ALGORITHM B

It was shown in the previous section that algorithm S, required to
solve the minimal cover problem, is embedded in the structure of
algorithm o©. In the communication example presented, algorithm S
would determine the minimal number of terminals at relay level i that
would have to transmit a packet so that every terminal at level i + 1
would receive a transmission, The related problem in graph theory is

known as the minimal vertex cover problem.
INTRODUCTION

The problem of finding the minimal cover set x"g X in a bipartite
graph G (X,Y) has been characterized as Steiner's second problem
(ZHAKIMI 1). 1In the past a number of algorithms have been developed to
solve this problem but none have achieved a polynomial bound. Previous
attempts at solutions (3BERGE, “HAKIMI) have been based on Boolean
techniques and require an exponential number of computations. A second
approach, utilizing 0-1 integer programming has been attempted but with a

similar theoretic bound and is only applicable to small problems.

In this paper we will present an algorithm to solve the reduced cover

problem with a polynomial number of computations. The solution to this

problem (AHAKIMI) is believed to hold the key to a variety of cover
problems posed by Steiner and known as problems 3, 4, 5. The

interrelationship between these problems has been shown by Hakimi.

22




Algorithm S can be claimed only to solve Steiner's second problem
heuristically because in its present form it fails to find an optimal
(minimal) cover for a small class of counterexamples. Even in the
heuristic form it is of significance in the communications field as in

all cases it will find a near optimal cover.

The algorithm will first be presented informally and will, later in

this section, be given in a more exact form.

No definitions beyond those presented in the previous section will be

necessary for either formulation of this algorithm,

23
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ALGORITHM B

*Assume we wish to find a minimal cover :x"g X for a set of

vertices Y in a bipartite graph G (X,Y).

. Initialize the working sets to be utilized in the algorithm.
Set: Y* =Y
X* = X
=g
. . . * . . .
1. Find which vertex in Y has the fewest adjacent vertices in X,

let this be ¥*, 1If more than one exists choose one at random.

2. Remove y* from Y*
3. I1f ¥* has greater than one vertex adjacent to it, then go to

step 3B else do 3A.

3A. - Let vertex that is adjacant to y*, call this z, enter the

minimal cover set Xo, remove it from X%,
- Let the set of vertices I'(z) be removed from Y*
- Go to step 4.
3B. This step is selected only if ¥* has greater than one vertex in
X* adjacent to it. 1In this case we apply a weighting scheme to

determine which vertex in [/ (§*) should be selected for the

minimal cover set.

24




Assign a weight to every x; € [ (§*) according to the following

scheme:

A

Let x.(c), the weight of x;€ I (F*) be equal to the sum (for all

y; € I (x;)) of:
Card [X*]- card[ r(yj) } .

- Thus X; is given a value according to how many vertices in Y¥ it
is adjacent to and i-versly proportional to the number of vertices in X*

each of these are adjacent to.

- Select the vertex in [ (§*) with the maximal weight. If more
than one of the vertices have the same maximal weight, select one at

i random. Let this vertex be z.

- Go to 3A.
4, If Y* =f then all vertices are covered with Xb STOP, else go
to 1.

*X¢ is a minimal cover of Y

As can be seen by the description of algorithm 8 given above this

] technique relies on a weighting scheme. It has a worst case complexity

V3 if the degree of connectivity of each vertex is computed in advance

and updated in each step; v3 preprocessing steps required in advance to
compute degree of connectivity, V  steps required to update at each

iteration. The total complexity of algorithm B is = v3 where

Cenan| o [q] , cors [i]

therefore complexity of the algorithm is:

0 (v},
25
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3B.

l&o

We now present the formal definition of algorithm g

Algorithm B

Yk =Y, X+ = X, X° =8

y* = any y, € 1

card [l‘(yj)] < card [r(yk)] Vimk

Yk = Yk -

If Card [ I"(y*) ] > 1, go to 3B, else let z= [ (¥*), go to
3A

Y* = vH - [r(r@*))] , X* = xx - 7 (3%),
X" + 2 go to 4

in € I (y»),

x; (c) = Z card [X*J - card [r(yj)]

zZ = X,

i xi(c)

v

x)  Vis j,(xi, xj) € I'(y»)
if card[z]>1 select one element from z and let that element comprise z
1 Go to 3A

if Y* =@  sTOP, (X° = solution set), else go to 2

26




SECTION 5 1

EXAMPLE UTILIZING ALGORITHM o,

Presented in this section is an example to demonstrate the application
of algorithm «;. This will solve the communication problem stated

in Section 1.
The network presented in this example was generated randomly.

The objective of algorithm a, when applied to the network was to
minimize the number of terminals transmitting an information packet
such that every unit in a community of interest receives the packet in

minimal time.

The network contains 50 units, 23 of which are members of a

prespecified community of interest.

Call this set V°. 1If we label each terminal in the network with a
number from 2 to 50, our community of interest can be defined as the

following set:

vo = [8, 15, 17, 19, 21, 22, 23, 25, 27, 28, 30, 31, 32, 33, 38, 39,

40, 41, 44, 45, 47, 48, 49

S is the source terminal from where the transmissions originate that

. . o .
the terminals in V wish to monitor.

Figure 1 shows the example network where an edge between two vertices

represents a bidirectional communications link.,

27







Figure 2 shows the subgraph induced by the shortest paths from the
source to all other terminals in the network. These paths were
computed using Sbi.jkstra's algorithm, an algorithm commonly used in

this application,

Below, algorithm o, is applied to the network to produce a minimal

broadcast structure.

Algorithm &, is shown in each step of its structure through several

iterations while algorithm 8 is stepped through once.

Iteration 1 (algorithm a,)

0=9
i=9
A9=[45, ll7]

Bg =[38, 39, 40, 44, 48] (This set defines the vertices in Vo,
the community of interest which are nine relay levels away from the

source on their respective shortest paths).
Algonthmﬂ[ Aqg -I"(Bs, Ag)r T(p, 8) - BSJ= Zg

Ag -I'(Bg, Ag) =[“5' 47 ]' [47] ) H

T(p, 8) - By = [38, 39, 40, 43, 44, 46, 48] -
38, 39, 40, 44, as] = [43, 46

Algorithm £ [4] ,[43, 46 ] = l?d] = 2g

(ZS is the set of units not in Bg that must transmit to relay

level 9 in order to reach all units in A9)
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Algorithm ﬂ[r(Ba, Ag)! 38] = ¥y
Algorithmﬂ[ [47] , [38, 39, 40, 44, 48] . [48] - ¥

(Y8 defines the set of terminals in Bg that must transmit to

relay level 9)
Tg =Yg U 2g = EB, 48] (this constitutes the set of terminals
that must relay the information at level 8 for terminals at level 9

to receive)

R8 = Bg U Zg = [38, 39, 40, 43, 44, 48] (this constitutes

the set of terminals which must receive messages at relay level 8)
Ag = Bg U 2g = [38, 39, 40, 43, 44, 48]

9-1 =8, 8>1 D go to 3

>
]
oo
i
et
-
u

This starts iteration 2. Figure 3 shows the communication links

selected thus far by algorittma,.
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9.

Figure 4 shows the links selected by algorithm o 1 in the first and

second iterationms.

Figure 5 shows the links selected in the first through third iterations

of algorithmdl.

Iteration 2

B, =[3z, 41, 49]

Algorithm 8| Ag - I(8,, Ag), TI(P,7) - 37] =z,
(in this case F(B7, Ag) = 38, 39, 40,744, 48] = AS)
Algorithm 8| @, T(P,7) - B,) |= ¢ = 2,

-

Algorithm 8 l‘(B,, Ag), By| = Y
Algorithm B [

[ag, 39, 40, 44, asj.[n, 41, 49 ]]
=| 41, 49 ]= Y,

Tg =[41, 49 ]uo =[ 41, 49]
R, =[32, 41, a9]
A, =[32, 41, 49]

i=8-1go to?3
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Iteration
3. B =[ 15, 17, 19, 21, 23, 25,
4, Algorithmﬁ[ Ag - r (Bs,

Ag = [zz, 30, 31, 33,

1"(35, Ag ) = [22, 23,

T (p,5) = [15, 16, 17,

5. Algorithm B [F(BS, Ag), 35]

>
»
L}

x° =9¢

1 Y* = 22

27, 28 ]
Ag), T(
s0]

30, 31,

19, 20,

Algorithm g8 [ [50] ’ [10, 20,

Algorithm 8 [[22, 30, 31, 33] ’ [15,
Algoritim B will be applied below

x°’-_‘-[15, 17, 19, 21, 23, 25, 27, 28]of

36

4 (algorithm o l)

P, 5) - BS] = zg

3 3]

21, 23, 25, 26, 27, 28, 35]

%, )]~ b9+

17, 19, 21, 23, 25, 27, zs]]

to find the minimal cover:

the set [22, 30, 31, 33]

Algorithm é

0 Y* = 22, 30, 31, 33
15,17, 19, 21, 23, 25, 27, 28




2 vk = y* - [zz] =[3o, 31, 33]

3 card [F(y*)] =1 go to 3A
'y*) =2z = [19]

3A Y* =[22, 30, 31, 33J - [22] = [30, 31, 33
X* = [15, 17, 19, 21, 23, 25, 27, 28] - [i9 =
15, 17, 21, 23, 25, 27, 28

x° = |19
4 Y* = § go to 1
1 y* = [3(%]

2 Y*

Y* - [30] = [31, 33]
3 'y = (27] card (]

! [}

] go to 3A

3A Y* = [30, 31, 33] -r'@en = [30, 31, 33] -
30, 31, 33]= ]
X* =[15, 17, 21, 23, 25, 27, 28] - [27]
x° = [19, 27]
|
4 Y* = @ STOP, X° is a minimal cover

(end of algoritimpB)
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5.3 Algori:hmﬂ[ (Bg, Ag), 35] = [ 19, 27] =Yg

6 [35} V) [19, 27] =[19, 27, 35]

s [3]u [15, 17, 19, 23, 25, 27, zs]

(=]

.

=
L]

~
o
L}

= [15, 17, 19, 23, 25, 27, 28, 35]

(<<}
>
I

5 = [15, 17, 19, 23, 25, 27, 28, 35]
4 9. i=6-1=5 > go to3
}

Figure 6 shows the links selected after the first through fourth

iterations of algorithm O 1

Figures 7, 8, 9, 10 show links selected through iterations 5, 6, 7, and 8
of algorithm o .

Figure 11 shows the final minimal broadcast networks produced by

algorithm Q.
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Table 1 shows the transmissions by relay level in the broadcast network

given by Dijkstra's algorithm compared to those in the broadcast network

generated by algorithm o 1

Performance of Algorithm o,

TABLE 1

Relay Dijkstra Algorithm o, % Difference
Level Trans, Rec, Trans. Rec. Trans. Rec.
0 1 2 1 1 0 -50
1 2 3 1 3 -50 0
2 3 5 3 3 0 =40
3 5 6 2 3 -60 -50
4 6 11 3 8 -50 -27.3
5 5 6 3 5 =40 -16.7
6 2 5 2 3 0 =40
7 4 6 2 6 =50 0
8 2 2 2 2 0 0
Totals 30 46 19 33 -36.7 -28.3
45
ot o et i 4_..._____ — ___t ;.._.._.........._- - - ; R ;‘ s s




It is clear in this example that algorithnal produces a dramatically
reduced broadcast network compared to that generated by Dijkstra's
algorithm while maintaining the minimal delay characteristics of

Dijkstra's results.
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